DINAMIKA pH TANAH BERPIRIT AKIBAT PERUBAHAN KONDISI AIR DAN APLIKASI AMELIORAN

Marsi Marsi

Abstract


Naturally, during dry season, pyrite tent to be oxidized due to soil water content and groundwater level decrease. This paper aims to evaluate the influence of soil water condition and ameliorants on pyritic soil pH dynamics. Pyritic soil was taken from a depth of 70-90 cm below soil surface in the acid sulphate land located at Mulyasari Village, Tanjung Lago District, Banyuasin Regency, South Sumatra. The research was carried out in greenhouse with 2 treatment factors, namely: Water condition (K1 = water condition maintained at 5 cm above soil surface during incubation period and K2 = water condition at 5 cm above soil surface and allowed to decrease during incubation period) and ameliorant (T = Without Ameliorant, B = Organic Matter, D = Dolomite, P = Phosphate Fertilizer and S = Silicate Coal Ash). The results showed that pyritic soil pH tended to be stable during incubation period for K1 treatment, and pH of soil treated with dolomite > Silicate Coal Ash > Organic Matter > P Fertilizer > Without Ameliorant. Meanwhile for K2 treatment, soil pH tended to decrease with the highest rates are 21.58x10-2, 19.33x10-2, 4.38x10-2, 7.50x10-2, and 12.07x10-2 pH unit per day, respectively for without ameliorant, organic matter, dolomite, phosphate fertilizer and silicate coal ash. The highest rate of decrease in pH of pyritic soil occurred in the range of decreasing water content from 66.31 to 41.73% for without ameliorant, organic matter and phosphate fertilizer, from 41.73 to 13.93% for silicate coal ash, and from 13 .93 to 8.22 % for dolomite. These findings can be applied for managing pyritic soil by maintaining soil water content from falling under water content critical limit range and under uncontrolled dry conditions it is recommended to use lime to minimize pyrite oxidation.


Full Text:

PDF (Indonesian)

References


Ahmed, A. A., Leinweber, P., and Kühn, O., 2023. Advances in understanding the phosphate binding to soil constituents: A Computational Chemistry perspective. Science of the Total Environment 887. http://dx.doi.org/10.1016/j.scitotenv.2023.163692

Bessho, M., Wajima, T., Ida, T., & Nishiyama, T. 2011. Experimental Study on Prevention of Acid Mine Drainage by Silica Coating of Pyrite Waste Rocks with Amorphous Silica Solution. Environmental Earth Sciences, 64, 311-318. http://dx.doi.org/10.1007/s12665-010-0848-0.

Bidari, E., and Aghazadeh, V. 2018. Pyrite oxidation in the presence of calcite and dolomite: Alkaline leaching, chemical modeling and surface characterization. Trans. Nonferrous Met. Soc. China 28(2018) 1433−1443. https://doi.org/10.1016/S1003-6326(18)64782-X

Blodau, C. 2006. A review of acidity generation and consumption in acidic coal mine lakes and their watersheds. Science and Total Environment. 369; 307–332. https://doi.org/10.1016/j.scitotenv.2006.05.004.

Cheng, W., Marsac, R. Hanna, K. and Boily. 2021.Competitive Carboxylate–Silicate Binding at Iron Oxyhydroxide Surfaces. Langmuir: 37: 13107–13115 https://doi.org/10.1021/acs.langmuir.1c02261.

Chettibi, M., Abramov A. A., Hadjadj A. E. 2012. Modelling of pyrite depression process by lime in copper and zinc flotation. Int. Res. J. Geol. Min. 155-160. http://www.interesjournals.org/IRJGM.

Crnobrna, B.; Llanqui, I.B.; Cardenas, A.D.; Panduro Pisco, G. Relationships between Organic Matter and Bulk Density in Amazonian Peatland Soils. Sustainability 2022, 14, 12070. https://doi.org/10.3390/su141912070

Dai, Y., Lu, Y., Li, J., Qin, H., Xia, F., and Zhang, J. 2020. Humic substances and its electron transfer capacity during composting: A review. E3S Web of Conferences 194. https://doi.org/10.1051/e3sconf/202019405034.

Dey, S., Regon, P., Kar, S., and Panda, S. K. 2020. Chelators of iron and their role in plant’s iron management. Physiol Mol Biol Plants 26(8):1541–1549. https://doi.org/10.1007/s12298-020-00841-y.

Elsetinow, A. R., Schoonen, M. A. A., and Strongin, D. R. 2001. Aqueous Geochemical and Surface Science Investigation of the Effect of Phosphate on Pyrite Oxidation. https://doi.org/10.1021/es0016809

Fredlund, D.G., Rahardjo, R., and Fredlund, M. D. 2012. Soil Mechanics for Unsaturated Soils, Wiley, New York. https://doi.org/10.1002/9780470172759

Galhardi, J. A., Bonotto, D. M., 2016. Hydrogeochemical features of surface water and groundwater contaminated with acid mine drainage (AMD) in coal mining areas: a case study in southern Brazil. Environmental Science and Pollution Research. 23(18), 18911-18927. https://doi.org/10.1007/s11356-016-7077-3.

Gardiner, D. T. and James, S. 2012. Wet Soil Redox Chemistry as Affected by Organic Matter and Nitrate. American Journal of Climate Change 1: 205-209. http://dx.doi.org/10.4236/ajcc.2012.14017.

Gelyaman, G. D. 2018. Faktor –Faktor yang mempengaruhi Bioavailabilitas Besi bagi Tumbuhan. JSLK1(1): 14-16. https://doi.org/10.32938/slk.v1i1.439

Jamnongwong, M., Loubiere, K., Dietrich, N., and Hebrard, G. 2010. Experimental study of oxygen diffusion coefficients in clean water containing salt, glucose or surfactant: Consequences on the liquid-sidemass transfer coefficients. Chemical Engineering Journal, vol. 165 (n°3). pp. 758-768. ISSN 1385-8947. DOI:10.1016/J.CEJ.2010.09.040. URL: http://dx.doi.org/10.1016/J.CEJ.2010.09.040

Jiang, J., Wang, Y. P., Yu, M., Cao, N., and Yan, J. 2018. Soil organic matter is important for acid buffering and reducing aluminum leaching from acidic forest soils. Chemical Geology 501: 86-94. https://doi.org/10.1016/j.chemgeo.2018.10.009.

Justi, M., Silva, C. A., and Rosa, S. D. 2021. Organic acids as complexing agents for iron and their effects on the nutrition and growth of maize and soybean. Archives of Agronomy and Soil Science. https://doi.org/10.1080/03650340.2021.1893308.

Kollias, K., Mylona, E., Adam, K., Papassiopi, N., and Xenidis, A. 2014. Suppression of Pyrite Oxidation by Surface Silica Coating. Journal of Geoscience and Environment Protection (2): 37-43. http://dx.doi.org/10.4236/gep.2014.24006.

Kollias, K., Mylona, E., Papassiopi, N., and Xenidis, A. 2015. Conditions favoring the formation of iron phosphate coatings on the pyrite surface. Desalination and Water Treatment. 56(5): 1274-1281. https://doi.org/10.1080/19443994.2014.958537.

Kollias, K., Mylona, E., Adam, K., Chrysochoou, M., Papassiopi, N., and Xenidis, A. 2019. Characterization of phosphate coating formed on pyrite surface to prevent oxidation. Applied Geochemistry 110. https://doi.org/10.1016/j.apgeochem.2019.104435.

Kraal, P., van Genuchten, C. M., and Behrends, T. 2022. Phosphate coprecipitation affects reactivity of iron (oxyhydr)oxides towards dissolved iron and sulfide. Geochimica et Cosmochimica Acta 321: 311–328. https://doi.org/10.1016/j.gca.2021.12.032.

Li, Q., Hu, W., Li, L., and Li, Y 2023. Interactions between organic matter and Fe oxides at soil micro-interfaces: Quantification, associations, and influencing factors. Science of the Total Environment 855. http://dx.doi.org/10.1016/j.scitotenv.2022.158710

Luo, Z., Liu, Y., Zhu, R., and Hu, X. 2016. Inhibition of Microbial Pyrite Oxidation by PropSSH for the Control of Acid Mine Drainage. Int. J. Electrochem. Sci., 11: 6501 – 6513, https://doi.org/10.20964/2016.08.59.

Molnár, Z., Solomon, W., Mutum, L., and Janda, T. 2023. Understanding the Mechanisms of Fe Deficiency in the Rhizosphere to Promote Plant Resilience. Plants 2023, 12(10). https://doi.org/10.3390/plants12101945

Mulyani A, Sarwani M. 2013. Karakteristik dan potensi lahan sub-optimal untuk pengembangan pertanian di Indonesia. Jurnal Sumberdaya Lahan. 7(1):47- 55. https://doi.org/10.2018/jsdl.v7i1.6429

Ng, J.F.; Ahmed, O.H.; Jalloh, M.B.; Omar, L.; Kwan, Y.M.; Musah, A.A.; Poong, K.H. 2022. Soil Nutrient Retention and pH Buffering Capacity Are Enhanced by Calciprill and Sodium Silicate. Agronomy: 12, 219. https://doi.org/10.3390/agronomy12010219

Noor, M. 2004. Lahan Rawa; Sifat dan Pengelolaan Tanah Bermasalah Sulfat Masam. PT Raja Grafindo Persada. Jakarta. 241 hlm.

Ouyang, Y., Liu, Y., Zhu, R., Fei Ge, Xu, T., Luo, Z., and Liang, L. 2014. Pyrite oxidation inhibition by organosilane coatings for acid mine drainage control. Minerals Engineering 72: 57–64. http://dx.doi.org/10.1016/j.mineng.2014.12.020.

Parbhakar-Fox, A., Lottermoser, B. G., 2015. A critical review of acid rock drainage prediction methods and practices. Minerals Engineering. 82, 107-124. http://dx.doi.org/10.1016/j.mineng.2015.03.015.

Robinson, D.A., Thomas, A., Reinsch, S., Lebron, I., Feeney, C. J., Maskell, L. C., Wood, C. M., Seaton, F. M., Emmett, B.A., and Cosby, B. J. 2022. Analytical modelling of soil porosity and bulk density across the soil organic matter and land use continuum. Nature 12: 7085. https://doi.org/10.1038/s41598-022-11099-7

Rupngam, T., Messiga, A2. J., and Karam, A. 2023. Solubility of soil phosphorus in extended waterlogged conditions: An incubation study. Heliyon 9. https://doi.org/10.1016/j.heliyon.2023.e13502.

Subagyo, H. 2006. Lahan Rawa Pasang Surut. Halaman 23-98 dalam Buku Karakteristik dan Pengelolaan Lahan Rawa. Balai Besar Litbang Sumberdaya Lahan Pertanian, Bogor.

Sutton-Grier, A. E., Keller, J. K., Koch, R., Gilmour, C., and Megonigal, J. P. 2011. Electron donors and acceptors influence anaerobic soil organic matter mineralization in tidal marshes. Soil Biology and Biochemistry 43 (7): 1576 – 1583. https://doi.org/10.1016/j.soilbio.2011.04.008.

Yuniati, M.D., Hirajima, T., Miki, H., and Sasaki, K. 2015. Silicate Covering Layer on Pyrite Surface in the Presence of Silicon-Catechol Complex for Acid Mine Drainage Prevention. Materials Transactions, Vol. 56 (10): 1733 - 1741. https://doi.org/10.2320/matertrans.M-M2015821.

Zeng, S., Li, J., Schumann, R., and Smart, R. 2013. Effect of pH and Dissolved Silicate on the Formation of Surface Passivation Layers for Reducing Pyrite Oxidation. Computational Water, Energy, and Environmental Engineering, (2): 50-55. https://doi.org/10.4236/cweee.2013.22B009.

Zhang, J., Mostofa, K. M. G., Yang, X., Mohinuzzaman, M., Liu, C., Senesi, N., Senesi, G. S., Sparks, D. L., H. Teng, H. H., Li, L., Yuan, J., and Li, S. 2023. Isolation of dissolved organic matter from aqueous solution by precipitation with FeCl3: mechanisms and significance in environmental perspectives. Nature 13: 4531. https://doi.org/10.1038/s41598-023-31831-1




DOI: http://dx.doi.org/10.25077/jsolum.21.1.30-42.2024

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

ISSN: 2356-0835