Subsiden, Emisi Karbon Dan Fisik Tanah Gambut Terbakar Dan Tidak Terbakar Di Areal Konservasi Gambut
Abstract
Today, peatland fires cause peat soil changes and release carbon emissions. The area protected as a peat conservation area in 2019 was not spared from fire incidents, where the land is an area with a maintained groundwater level and has monitoring data on groundwater level and peat thickness. This paper aimed to identify the subsidence, carbon emissions, and several physical properties of peat soil in burned and unburned peat conservation areas. The variables measured were hydraulic conductivity, subsidence, bulk density, water content, carbon content, and carbon emissions. The number of observation plots was 6 plots, with three (3) unburned plots and three (3) burned plots located in the Peat Conservation Area in Ketapang Regency, West Kalimantan. The six observation plots were in peatlands with the Typic Haplohemists subgroup, and shrub land cover. The results showed that the hydraulic conductivity and carbon content in unburned and burned land were not statistically and significantly different (P>0.05). The values of bulk density, water content, subsidence, and carbon emissions on burned land were significantly different (P<0.05) compared to unburned land. Subsidence in unburned locations was 1.83 ± 0.44 cm, while in burned areas it was 5.56 ± 0.84 cm. The amount of subsidence affects the amount of carbon emissions resulting from the loss of peat layers, namely on unburned land it was 9.24 ±3.13 tonnes/ha, and 35.53±3.73 tonnes/ha on burned land. The results of carbon emissions from subsidence caused by land fires can be determined as a basic emission factor for these two land conditions with similar peat characteristics.
Â
Keywords : Peat Fires, Peat Conservation Areas, Physical Properties of Peat, Subsidence, Carbon Emissions
Full Text:
PDF (Indonesian)References
Aflahah, E., Hidayati, R., Hidayat, R., and Alfahmi, F. 2019. Pendugaan hotspot sebagai indikator kebakaran hutan di Kalimantan berdasarkan faktor iklim. Journal of Natural Resources and Environmental Management. 9(2): 405-418.
Agus, F., dan Suganda H. 2006. Penetapan Konduktivitas Hidrolik Tanah Dalam Keadaan Jenuh: Metode Lapang. Dalam Sifat Fisik Tanah dan Metode Analisisnya. Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian. Bogor.
Agus, F., dan Subiksa, I.G.M. 2008, Lahan Gambut: Potensi untuk Pertanian dan Aspek Lingkungan. Balai penelitian Tanah dan World Agroforestry Centre (ICRAF). Bogor.
Agus, C., Azmi, F.F., Widiyatno., Ilfana Z.R., Wulandari, D., Rachmanadi, D., Harun M.K., and Yuwati, T.W. 2019. The Impact of Forest Fire on the Biodiversity and the Soil Characteristics of Tropical Peatland. In: Leal Filho, W., Barbir, J., Preziosi, R. (eds) Handbook of Climate Change and Biodiversity. Climate Change Management. Springer, Cham. https://doi.org/10.1007/978-3-319-98681-4_18.
Chahyahusna, A., Baskoro, D.P.T., and Anwar, S. 2022. Subsidence and percentage of CO2 emission from decomposition to subsidence of peatland on oil palm plantations. AGRIVITA Journal of Agricultural Science, 44(2), 258–265. http://doi.org/10.17503/agrivita.v44i2.3038.
Couwenberg, J., Dommain, R., and Joosten, H. 2010. Greenhouse gas fluxes from tropical peatlands in South–East AsiaGlob. Change Biol. 16 1715–32.
Dhandapani, S., Evers, S., Boyd, D., Evans, C.D., Page, S., Parish, F., Sjogersten, S. 2023. Assessment of differences in peat physico-chemical properties, surface subsidence and GHG emissions between the major land-uses of Selangor peatlands. CATENA. Vol 230, 107255.
Heil, A., Langmann, B., and Aldrian, E. 2006. Indonesian peat and vegetation fire emissions: study on factors influencing large-scale smoke haze pollution using a regional atmospheric chemistry model. Mitigation and Adaptation Strategies for Global Change. 12: 113–133.
Hergoualc’h, K., and Verchot, L.V. 2011. Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001, doi:10.1029/2009GB003718.
Hooijer, A., Page, S., Jauhiainen, J., Lee, W. A., Lu, X. X., Idris, A., and Anshari, G. 2012. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences, 9, 1053–1071, https://doi.org/10.5194/bg-9-1053-2012.
IPCC 2014. Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.
Kurnianto, S., Selker, J.B., Kauffman., Murdiyarso., and Peterson, J.T. 2018. The influence of land-cover changes on the variability of saturated hydraulic conductivity in tropical peatlands. Mitigation and Adaptation Strategies for Global Change. Volume 24, pages 535 –555.
Manurung, R., Nusantara, R.W., Umran, I., dan Warganda. 2021. Kajian Kualitas Tanah pada Lahan Gambut Terbakar di Kota Pontianak Provinsi Kalimantan Barat. Jurnal Ilmu Lingkungan. 19(3), 517-524, doi:10.14710/jil.19.3.517-524.
Rein, G., Cleaver, N., Ashton, C., Pironi, P., and Torero, J.L. 2008. The Severity of Smouldering Peat Fires and Damage to the Forest Soil. Catena 74 (3), pp. 304-309.
Rieley, J.O., and Page, S.E. 2008. Carbon budgets under different land uses on tropical peatland. In Proceedings of the 13th International Peat Congress. pp. 245-249.
Sulaeman, D., Sari E.E.N., and Westhoff, T.P. 2021. Effects of peat fires on soil chemical and physical properties: a case study in South Sumatra. IOP Conf. Ser.: Earth Environ. Sci. 648. 012146.
Page, S.E., Siegert, F., Rieley, J.O., Boehm, H.V., Jaya, A., and Limin S. 2002. The amount of carbon released from peat and forest fires in Indonesia during 1997. NATURE. Vol 420.
Page, S., Hoscilo, A., Langner, A., Tansey, K., Siegert, F., Limin, S., and Rieley, J. 2009. Tropical peatland fires in Southeast Asia. In: Tropical Fire Ecology. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77381-8_9.
Prabandini, G. 2016. Pengukuran Konduktivitas Hidrolik Gambut Dengan Menggunakan Metode Slug Test (Studi Kasus: Katingan, Kalimantan Tengah). Skripsi. Institut Pertanian Bogor. Bogor.
Prat-Guitart, N., Rein, G., Hadden, R.M., Belcher, C.M., Yearsley, J.M. 2016. Effects of spatial heterogeneity in moisture content on the horizontal spread of peat fires. Science of The Total Environment. Vol 572 : 1422-1430.
Putra, E.I and Hayasaka, H. 2011. The effect of precipitation pattern of dry season on peat fire occurrence in Mega Rice Project area, Central Kalimantan, Indonesia. Tropics 19(4): 145-156.
Putri, T.T.A., Syaufina, L., and Anshari, G.Z. 2016. Emisi Karbon Dioksida (CO2) Rizosfer dan Non Rizosfer dari Perkebunan Kelapa Sawit (Elaeis guineensis) pada Lahan Gambut Dangkal. Jurnal Tanah dan Iklim. Vol 40 No. 1 – 2016: 43-50.
Saharjo, B.H and Nurhayati, A.D. 2005. Changes in chemical and physical properties of hemic peat under firebased shifting cultivation. Tropics. 14: 263–269.
Syaufina L. 2008. Kebakaran Hutan dan Lahan di Indonesia. Malang (ID): Bayumedia.
Van Beers, W.F.J. 1970. The auger-hole method: a field measurement of the hydraulic conductivity of soil below the water table. Rev. ed. ILRI Bulletin 1, Wageningen, 32 p.
Wasis, B. 2003. Dampak Kebakaran Hutan dan Lahan Terhadap Kerusakan Tanah. Jurnal Manajemen Hutan Tropika. Vol. IX No. 2 : 79-86.
Wasis, B., Winata, B., and Marpaung, D.R. 2018. Impact of land and forest fire on soil fauna diversity in several land cover in Jambi Province, Indonesia. BIODIVERSITAS. 19 (2): 740-746.
Wasis, B., Saharjo, B.H., and Putra, E.I. 2019. Impacts of peat fire on soil flora and fauna, soil properties and environmental damage in Riau Province, Indonesia. BIODIVERSITAS. 20 (6): 1770-1775.
Winarna, Murtilaksono, K., Sabiham, S., Sutandi, A., and Sutarta, E.S. 2016. Hydrophobicity of Tropical Peat Soil from an Oil Palm Plantation in North Sumatra. J. Agron., 15: 114-121.
DOI: http://dx.doi.org/10.25077/jsolum.21.1.14-21.2024
This work is licensed under a Creative Commons Attribution 3.0 License.