Aktivitas β-Glukosidase pada Beberapa Kelas Penggunaan Lahan Gambut Tropis di Pesisir Selatan, Sumatera Barat

nurul hijri, Mimien Harianti, Zuldadan Naspendra, Teguh Budi Prasetyo

Abstract


Most of the peatlands in Pesisir Selatan, West Sumatra have been converted into agricultural activities. Due to drainage, the peat decomposition process becomes faster. The activity of β-glucosidase is one of the enzymes that can be used as an indicator of the decomposition of organic matter and produces greenhouse gas emissions, likes CO2. Therefore, this study was conducted to identify the activity of β-glucosidase in several land uses in Pesisir Selatan peatlands. Observations were performed in several land-use types consisting of agricultural land (LP), bare land (LT), shrubs (SB), smallholder oil palm plantations (PSr), private company oil palm plantations (PSs), and forests (H). The activity of β-glucosidase was analyzed by using salicin and Na-acetate methods. The results of this study showed that the highest β-glucosidase activity was found in agricultural land use (LP). Based on the land use types, the activity of β-glucosidase follows agricultural land (LP) 3.42 μg.g-1.jam-1 > bare land (LT) 2.26 μg.g-1.jam-1 > shrubs (SB) 1.63 μg.g-1.jam-1 > smallholder oil palm plantations (PSR) 1.31 μg.g-1.jam-1 > private company oil palm plantations (PSs) 1.28 μg.g-1.jam-1 > forest (H) 0.80 μg.g-1.jam-1. Soil characteristic that significantly affects enzyme activity is water content where the higher the water content, the lower the β-glucosidase activity, and vice versa. Based on this study can be concluded that the change in land use from natural land to agricultural land triggers an increase in the activity of enzymes in decomposed peat materials.

Key words: β-glucosidase, enzyme, palm plantation, land-use, peatland

Full Text:

PDF

References


Agus, F., A. Mulyani, A. Dariah, Wahyunto, Maswar, and E.Susanti. 2012b. Peat Maturity and Thickness for Carbon Stock Estimation. Proceedings of 14 th International Peat Congress, Stockholm, Swedia, 3-8 June 2012.

Almeida R.F., E.R. Naves, R.P. Mota. 2015. Soil quality: Enzymatic activity of soil β-glucosidase. Glob. J. Agric. Res. Rev. 3(2):146-150.

Boguta, P., and Z. Sokolowska 2014. Statistical relationship between selected physicochemical properties of peaty-muck soils and their fraction of humic acids. Int. Agrophys. 28: 269-278.

Carnevale N.J., and J.P Lewis. 2001. Litterfall and organic matter decomposition in a seasonal forest of the eastern Chaco (Argentina). Rev. biol. trop 49 (1) San José mar.

Korner C., and J.A. Arnone. 1992. Response to elevated carbon dioxide in artificial tropical ecosystems. Science. 257: 1672-1675.

Pelczar, M.J., and E.C.S. Chan. 1988. Dasar-Dasar Mikrobiologi 1. Alih bahasa: Hadioetomo RS, Imas T, Tjitrosomo SS dan Angka SL. Jakarta (ID): UI Press. hal. 997.

Salampak. 1999. Peningkatan Produktivitas Tanah Gambut yang Disawahkan dengan Pemberian Bahan Amelioran Tanah Mineral Berkadar Besi Tinggi. [Disertasi]. Program Pascasarjana IPB. Bogor. 171 hlm.

Schinner F., R. Åhlinger , E. Kandeler , R. Margesin. 1996. Methods In Soil Biology. New York (USA): Springer-Verlag Berlin Heidelberg. 426 hlm.

Sukarman, Suparto, Mamat HS. 2012. Karakteristik tanah gambut dan hubungannya dengan emisi gas rumah kaca pada perkebunan kelapa sawit di Riau dan Jambi. Prosiding Seminar Nasional Pengelolaan Lahan Gambut Berkelanjutan. Bogor. 4 Mei 2012. hlm 95-111.

Suwondo, S. Sabiham, Sumardjo, Paramudya B. 2010. Analisis lingkungan biofisik lahan gambut pada perkebunan kelapa sawit. J Hidrolitan. 1(3):20-28.

Zhang Y., L.Chen, Wu. Z. Sun. 2011. Kinetic parameters of soil β-glucosidase response to environmental temperature and moisture regimes. Revista Brasileira de Ciência do Solo. 35: 1285-1291.




DOI: http://dx.doi.org/10.25077/jsolum.19.1.15-23.2022

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

ISSN: 2356-0835