CADANGAN, KEHILANGAN, DAN AKUMULASI KARBON PADA PERKEBUNAN KELAPA SAWIT DI LAHAN GAMBUT TROPIKA



DOI: https://doi.org/10.25077/js.8.1.1-10.2011

Maswar Maswar *  (Mahasiswa S.3 pada Program Studi Ilmu Tanah, Sekolah Pascasarjana, Institut Pertanian Bogor)
Oteng Haridjaja (Departemen Ilmu Tanah dan Sumberdaya Lahan, Fakultas Pertanian, Institut Pertanian Bogor)
Supiandi Sabiham (Departemen Ilmu Tanah dan Sumberdaya Lahan, Fakultas Pertanian, Institut Pertanian Bogor)
Meine van Noordwijk (Principal soil ecologist in World Agroforestry Center (ICRAF))

(*) Corresponding Author

Abstract


Peat land conversion to oil palm plantation affects carbon stocks and can change a net sink of atmospheric carbon (C) into a net source. The influence of location, type of peat, drainage practices and fertilization is insufficiently known. A study was conducted in West Aceh from May 2008 until October 2009  in oil palm plantations of various age.  Carbon stocks and  C loss were calculated from data of bulk density (BD), ash content, carbon content, and peat depth. A new method for C loss estimates using ash as internal tracer was developed and tested. Peat land characteristics after drainage and conversion to oil palm plantation were investigated by field observation and laboratory analysis of peat soil samples in the laboratory. Results showed that: 1) Distance from the drain influences the rates of: a) water table depth, b) subsidence, with rates of 1,1  to 9,2 cm/year and 22.67 – 57.23% influence of C loss, and c) soil carbon loss. 2) Ash content and bulk density of the peat are related, indicating the partial loss of soil C during compaction. 3) An “internal tracer” estimate of peat C loss yields estimates of CO2 flux up to 48 t CO2-eq ha-1 y-1 for young oil palm, highly correlated with measured rates of subsidence of the surface and water table depth. 4) Patterns of weight loss of surface litter, measured in litter bags, respond to inherent quality (C/N). Some data for oil palm on shallow peat suggest that a net sink for C can be maintained under such conditions.

Key words: Carbon stock, carbon loss, carbon accumulation,  oil palm, tropical peat

Copyright (c) 2017 Jurnal Solum


Full Text:

PDF

References


Alex K and Joosten H. 2008. Global peatland assesment. Factbook for UNFCCC policies on peat carbon emission.

Andrie E. 2010. The depth of ground water table dynamics and charackteristic of peatland near drainage canal ex, mega rice project in Central-Kalimantan. Makalah Seminar Ilmiah VI Lingkungan Tropis - IATPI.

Dawson, J.J.C., Billett, M.F., Hope, D., Palmer, S.M. and Deacon, C. 2004. Sources and sinks of aquatic carbon linked to a peatland stream continuum. Biogeochemistry 70: 71-92.

Etik, P.H. 2009. Emisi karbon dioksida (CO2) dan metan (CH4) pada perkebunan kelapa sawit di lahan gambut yang memiliki keragaman dalam ketebalan gambut dan umur tanaman. Disertasi S.3. Program Studi Ilmu Tanah, Sekolah Pascasarjana, Institut Pertanian Bogor. 158 hal.

Finn H. B. 1983. Water table levels at different drainage intensities on deep peat in Northern Norway. Forest Ecology and Management Volume 5, Issue 3: 169-192

Gronlund, A., Atle H., Anders, H. and Daniel, P.R.2008. Carbon loss estimates from cultivated peat soils in Norway: a comparison of three methods. Nutr Cycl Agroecosyst. 81: 157 – 167.

Hairiah, K. dan Rahayu, S. 2007. Petunjuk praktis pengukuran ”karbon tersimpan” di berbagai macam penggunaan lahan. World Agroforestry Centre. 77 hal.

Hooijer A, Silvius M, Wösten H, Page S. 2006. PEAT CO2, Assessment of CO2 Emission from drained peatlands in SE Asia. Wetland International and Delft Hydraulics report Q3943.

Joosten H, and Clarke D. 2002. Wise use of mires and peatlands – Background and principles including a framework for decision-making. International Mire Conservation Group / International Peat Society, 304pp.

Joosten H. 2009. Peatland status and drainage related emissions in all countries of the world. The Global Peatland CO2 Picture. Wetlands International. www.wetlands.org. 35p.

Neil F, Sarah B and Malcolm McL. 2005. Peat subsidence near drains in the Waikato region. Environment Waikato Technical Repot 2005/40. 33p.

Pribyl. 2010. A critical review of the conventional SOC to SOM conversion factor. Geoderma. 196: 75 – 83.

Susanne, M.S. and Price, J.S. 1999. Soil water flow dynamics in managed cutover peat field, Quebec: Field and laboratory invertigations. Water Resouces Research. Vol. 35. No. 12: 3675-3683.

Turetsky, M.R. and Wieder, R.K. 2001. A direct approach to quantifying organic matter lost as a result of peatland wildfire. Can. J. For. Res. 31: 363–366.

Yulianti N. 2009. Cadangan karbon lahan gambut dari agroekosistem kelapa sawit PTPN IV Ajamu Kabupaten Labuhan Batu, Sumatera Utara. Tesis Sekolah Pasca Sarjana IPB Bogor.

Zhang. 2007. Effects of nitrogen on the ecosystem respiration, CH4 and N2O emissions to the atmosphere from the freshwater marshes in Northeast China. Environ Geol. 52: 529-539.


StatisticsArticle Metrics

This article has been read : 1980 times
PDF file viewed/downloaded : 28 times

Copyright (c) 2017 Jurnal Solum



ISSN: 2356-0835